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ABSTRACT 
             Predicting the distribution of pressure in an oil reservoir is of fundamental importance for its evaluation 

and maintenance, since the pressure varies in space over time. In this paper, we considered a one-dimensional 

weakly compressible fluid flow in an oil reservoir. Numerical solutions were carried out to determine the 

pressure distribution for one phase using the explicit finite difference method using MATLAB. The results 

obtained show that the effectiveness of this method depends on the chosen time step and simulation time. 

Keywords: efficiency, explicit method, time step and simulation time, matlab, porous media, pressure and 
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INTRODUCTION 
            An oil reservoir is a subterranean porous medium containing hydrocarbons trapped either structurally or 

stratigraphically. Therefore, the description of fluid flow through such a medium is extremely complex 

compared to the flow through pipes or pipelines [1]. Unlike flow in pipes or channels, there are no defined flow 

paths in porous media, making it difficult to evaluate their capacity as a function of pressure. Due to the complex 

nature of multiphase flow, the nonlinearity of their constitutive equations, and the complexity of the reservoir, 

the search for analytical solutions to practical problems of fluid flow is impossible. Therefore, the only way to 

solve such models is to use numerical methods such as the finite difference method or the finite element method 

[2]. Nowadays, reservoir modeling has become a common tool in the field of petroleum engineering, which is 

widely used to solve various hydrodynamic problems associated with the production of oil and gas from 

reservoirs. For example, the authors of [3] developed an Embedded Discrete Fracture Model (EDFM) to model 

reservoir composition using a grid of corner points. Their model proved to be reliable based on the results 

obtained, and also compatible with various types of numerical solution schemes in existing simulators. Abdulla 
et al. [4] also used a multi-scale method to model and simulate two-phase flow in a reservoir using MRST. Shen 

et al. [5] used parallel computing techniques to model two-phase flow in naturally fractured reservoirs using dual 

porosity. Their numerical results have shown that their simulator is accurate and scalable compared to 

commercial software, and the numerical scheme is also efficient. 

 

1. Research methodology 
             As stated earlier, the only means by which complex multiphase fluid flow models can be solved is 

through the use of numerical methods such as the finite difference method, the finite element method, and the 

finite volume method. In this regard, we carried out a comparative study of finite difference methods for solving 

a one-dimensional transport equation with a discontinuity in the initial boundary value. Research has shown that 

this method has the advantage in terms of faster time than other methods if the desired level of accuracy is 
required, as they can use larger time steps. Numerical solutions using the explicit direct difference method are 

provided in this article to mathematically predict the pressure distribution in an oil reservoir for a single-phase, 

one-dimensional, weakly compressible fluid flow. Providing numerical solutions to the fluid flow equations 

through reservoir simulation will help in creating effective reservoir monitoring and pressure maintenance plans . 

to improve the ultimate recovery from the target reservoir and other reservoir systems. 

 

          The development of reservoir simulators begins with the formulation of a finite difference model for the 

equations that govern fluid flow in porous media. These equations describe the physical processes of interest in 

the reservoir and are presented in the form of systems of equations (SE), which take into account the dynamic 

relationship between the liquid, the porous medium, and the flow conditions of the system [6]. These SEs are 

formulated in accordance with three basic physical principles, such as the continuity equation, Darcy's law, and 

the equation of state. Let us consider a horizontal, one-dimensional, slightly compressible fluid (oil) flow, and 



assume that the reservoir has two outer boundaries closed to the flow, but has an inner boundary in the form of a 

production well [7]. The general form of the equation for the flow of a single-phase fluid has the form: 
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where P - liquid potential, 
x

k - reservoir rock permeability in the x direction (Darcy), µ - fluid viscosity, 
b

ν - 

total block volume, φ  - reservoir rock porosity, 
t

C - total compressibility of oil and rock, B  - oil-bearing 

volume factor , 
c

β - transmission coefficient, 
c

a  −  volume conversion coefficient, q - oil consumption,

 

x∆ - 

grid length, 
x

A   −  grid cell area in x direction. The inverse finite-difference approximation to a slightly 

compressible flow leads to an explicit calculation procedure for the pressure of a new time level [8]. Therefore, it 

is used to find solutions by solving an equation involving both the current state of the system and at a later time. 

 

2.  Basic fluid flow equation 
Since the equation that makes up the mathematical model of the reservoir is too complex to be solved 

analytically, finite difference approximation is used to bring the equation to a form that can be solved on a digital 

computer. The process involves discretization of the derivative with respect to space and time. From Equation (1), 

the reservoir linear system is assumed to be in the x direction , and the discretization is defined by the equation as: 
 

                   

(2) 

 
 Simplifying equation (2) by introducing transmissibility terms results in: 

 

i 1/ 2 i 1/ 2

b i
ix i 1 i ix i i 1 sc t0

c i i

V pφ
T (p p ) T (p p ) q c

a B t+ −+ −

  ∂ − − − + =   ∂ 
                                        (3) 

2.1. Direct difference approximations for the fluid flow equation 
            Direct difference approximation of the flow equation at the base time level for the first derivative on the 

right side of the equation. (3) is expressed as: 
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Substituting equation (4) into equation (2) and (3) at the time level n
t leads to the following result: 
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In terms of transmissibility, 
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2.2 . Explicit Composition Calculation Method 
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2.3. Inverse Difference Approximations for the Fluid Flow Equation 
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The inverse difference approximation is commonly used in reservoir modeling because its use does not limit the 

time step size for a stable solution. An approximation of the inverse difference of the first derivative at the base 

time level is written as:  
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3. Implicit Calculation Method 

The forward-difference approximation to the equation of flow of a weakly compressible fluid leads to an implicit 

procedure for calculating pressures at a new time level. Equation transformation. (10) gives: 
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where quantities n 1
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are all unknowns. In contrast to the explicit formulation, the equation. (10) 

cannot be solved explicitly for, n 1

iP
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 also unknown. As a result, equation (10) written for all 

grid blocks and unknowns must be solved simultaneously or using iterative algorithms. Using the last solution 

and after some algebraic operations, we get the original equation 
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(1) for the flow of a single-phase liquid in a tank. Note that a detailed procedure of the forward finite difference 

approximation for calculating the pressure of an easily compressible flow is given in [8]. Therefore, it is used to 

find solutions by solving an equation involving both the current state of the system and at a later time. 

  

 

4.  Implicit Backward Difference Method 

 
       In Figures 1-4 has been shown the simulation results obtained for the implicit method using a time step size 

of 1 day. In this case, the pressure may move more than one grid block in each time step. This is clearly seen in 
Fig. 1, since the pressure drop was observed not only on the grid block 3 on the 1st day, as in the explicit 

method, but also a pressure drop was observed on the block 3 and 5 for the simulation time of 1 day. This is 

because the implicit method requires solving unknown pressures for a pair of systems of equations. The implicit 

method showed the same smooth decrease in pressure first on neighboring blocks due to their proximity to the 

production well (grid block 4), and then moved to neighboring blocks, thereby confirming the statement that the 

closer the grid block is to the production well, the higher the pressure drop when withdrawing fluid. It may be 

the short time it takes for transient pressure to reach these grid blocks adjacent to the production well. 

Accordingly, grid boxes 3 and 5 show the same trend (constant pressure values) as in the explicit simulation 

results, but it took longer simulation time before the corresponding pressure values changed slightly and steadily. 

For grid blocks 2 and 6, the same pressure values were recorded from the 1st to the 55th day, then a decrease 

was observed from the 56th day. The ideal trend that was observed could be due to their placement side by side 
with grid blocks 3 and 5 respectively, so there is less pressure disturbance due to fluid intake. However, the 

change in their respective pressure values can be attributed to pressure perturbations occurring in nearby grid 



blocks (blocks 1 and 6) due to fluid withdrawal. In comparison, grid boxes 1 and 6 recorded the same trend 

(constant pressure values) as grid boxes 2 and 6 from the start of the simulation to the decline on day 35. 

       

 

 

 
 

Figure 1 . Pressure distribution for a year with a timestep of 1 day using implicit method 

 

 
 

 
 

 

Figure 2. Pressure distribution for a year with a timestep of 2 days using implicit method 
 

 
 

 

 



 

 

Figure 3. Pressure distribution for a year with a timestep of 3 days using implicit method 
 

 

 

 
 

 

Figure 4. Pressure distribution for a year with a timestep of 4 days using implicit method 
 

 

CONCLUSION 
              The simulation results comparing different time intervals showed that the stability of the explicit finite 

difference formulation depends on the specific conditions, the chosen time step, the reservoir geometry or the 

allocated simulation time. This is the main limitation of the explicit direct difference formulation, which reduces 

its use in oil reservoir modeling. 
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