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Abstract 
           Spectral methods provide very high spatial resolution for a wide range of non-linear wave equations . In 

this study, the Fourth Order Runge-Kutta Exponential Time Difference (ETDRK4) method is used to numerically 

simulate the Gross-Pitaevskii equation. Approximate numerical solutions of the Gross-Pitaevskii equation 

obtained using the Matlab software . It is shown that the proposed method significantly increases the 

computational costs. This improvement becomes more significant, especially for large time evolutions. 
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Introduction 
 Partial differential equations are a widely used mathematical apparatus in the development of models in 

various fields of science and technology. Unfortunately, the explicit solution of these equations in an analytical 

form is possible only in special simple cases, and, as a result, the possibility of analyzing mathematical models is 

provided by solving these equations by approximate numerical methods. In recent years, non-linear evolution 

equations have become a very active field for describing various areas of non-linear sciences. One-dimensional 

nonlinear Schrödinger equation (1D NLSE) is a classical field equation. Its most prominent applications are 

related to the propagation of light waves in optical fibers and planar waveguides along with many others [1]. In 

particular, 1D NLSE is a non-linear second-order partial differential equation applicable to both classical and 

quantum mechanics. The nonlinear Schrödinger equation has an extremely high universality and is used to 

describe wave processes in many areas of physics: in the theory of surface waves [1], in models of the evolution of 
plasma oscillation distributions [2], nonlinear optics [3], biophysics, etc. The non-linear Schrödinger equation 

describes the propagation of non-linear Langmuir waves, waves in deep water; waves in transmission lines, 

acoustic waves in liquids with bubbles and, above all, the propagation of optical radiation in nonlinear media. A 

typical application of the nonlinear Schrödinger equation is the dynamics of optical pulses in an optical fiber. The 

time evolution of the envelope of an optical pulse in a fiber is well approximated by the nonlinear Schrödinger 

equation, including the description of very long transoceanic optical communication lines, see, for example, [4, 5]. 

      The nonlinear Schrödinger equation under consideration is a nonlinear differential equation with partial 

derivatives, which in the general case cannot be solved analytically. Therefore, numerical simulation methods 

are used to solve this problem. In this section, we present the exponential time difference (ETD) scheme that was 

used in [6] and [7] to numerically solve the Schrödinger equation in semiclassical mode. Finally, note that ETD 

is a very powerful general-purpose numerical method for solving GPE that can be applied to a large number of 
different physical situations [8]. The efficiency of this method and the high accuracy of the solutions make ETD 

a good choice for solving experimental situations that are very demanding on numerical characteristics [9]. 

       The idea of ETD methods is similar to the integrating factor method (see, for example, [10] or [11]): we 

multiply both sides of the differential equation by some integrating factor, then we make a change of variable that 

allows us to solve the linear part exactly, and finally, we use the numerical method of our choice to solve the 

transformed non-linear part [12]. 

Finally, note that ETD is a very powerful general-purpose numerical method for solving GPE that can be 

applied to a wide variety of physical situations. The efficiency of this method and the high accuracy of the 

solutions make ETD a good choice for solving experimental situations that are very numerically demanding. 
 

Two-dimensional nonlinear Schrödinger equation 
Considering the good behavior of our simulation for a one-dimensional problem and the fact that MATLAB © 

also implements multidimensional discrete Fourier transforms and their inverses (with two variables), we thought 

that slight modifications to our program would allow us to model a two-dimensional cubic non-linear Schrödinger 

equation [13] 
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Whereq  is a real constant and a sign q  gives two very different problems: the focus case if q 0> and the 

defocus case for q 0< . This mathematical model is found in many physical applications; this is especially 

important in optics (for more details, see [13]). In our first test with q 1= and initial condition 

0ψ (x,y)=2+0.01 sin (x / 4) sin (y / 4).⋅ +π +π  

(x,y) [- , ] [- , ].∈ π π × π π  

c 
0||ψ || 12.56≈ , using ( 256 ) 2 collocation points, we got Fig. 1-2.  

Results and discussions 

Computer time takes about 64.30 seconds. In Fig. 1-2 we have plotted the time evolution for q 1= , s 

0 2||ψ || 8.8623.≈ We can see that the dispersion process is dominant. Figure 1 shows partial output of the first 

program solution of NLSE when the discretization size x 0.1∆ = , spatial domain is π x, y π− ≤ ≤  and step 

size is on the interval 0 t 10≤ ≤ . Figure 2 shows partial output of the first program solution of CSE when the 

discretization size x 0.3∆ = , spatial domain is π x, y π− ≤ ≤  and step size is on the interval 0 t 10≤ ≤ . 

 

 
 

 

 
 

Fig.1. The solution of NLSE when the discretization size , spatial domain 

is  and step size is on the interval . 

Fig.2. The solution of NLSE when the discretization size , spatial domain is 

 and step size is on the interval . 



According to the results presented in these figures, this method provides a high accuracy of the numerical 

solution of the Gross-Pitaevskii equation . On the other hand, as can be seen from the figures, the result obtained 

by the implicit exponential difference scheme has better results than the results obtained by other numerical 

schemes. These calculations show that the accuracy of the solutions is quite high even in the case of a small 

number of grid nodes. Finally, note that ETD is a very powerful general-purpose numerical method for solving 

GPE that can be applied to a wide variety of physical situations. The efficiency of this method and the high 

accuracy of the solutions make ETD a good choice for solving experimental situations that are very numerically 

demanding. 

CONCLUSION 
We concluded that they are more accurate than other methods (standard factor integration methods or linear-

implicit schemes); they have good stability properties and are widely applicable to non-linear wave equations. We 

calculated and studied the numerical stability function of the ETDRK 4 methods and, in addition to their good 

stability properties, identified the reasons for their good behavior for dissipative and dispersion problems. 
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